Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available June 1, 2026
- 
            Abstract Plant responses to water stress is a major uncertainty to predicting terrestrial ecosystem sensitivity to drought. Different approaches have been developed to represent plant water stress. Empirical approaches (the empirical soil water stress (or Beta) function and the supply‐demand balance scheme) have been widely used for many decades; more mechanistic based approaches, that is, plant hydraulic models (PHMs), were increasingly adopted in the past decade. However, the relationships between them—and their underlying connections to physical processes—are not sufficiently understood. This limited understanding hinders informed decisions on the necessary complexities needed for different applications, with empirical approaches being mechanistically insufficient, and PHMs often being too complex to constrain. Here we introduce a unified framework for modeling transpiration responses to water stress, within which we demonstrate that empirical approaches are special cases of the full PHM, when the plant hydraulic parameters satisfy certain conditions. We further evaluate their response differences and identify the associated physical processes. Finally, we propose a methodology for assessing the necessity of added complexities of the PHM under various climatic conditions and ecosystem types, with case studies in three typical ecosystems: a humid Midwestern cropland, a semi‐arid evergreen needleleaf forest, and an arid grassland. Notably, Beta function overestimates transpiration when VPD is high due to its lack of constraints from hydraulic transport and is therefore insufficient in high VPD environments. With the unified framework, we envision researchers can better understand the mechanistic bases of and the relationships between different approaches and make more informed choices.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            These datasets accompany a publication in Geophysical Research Letters by Martens et al. (2024), entitled: "GNSS Geodesy Quantifies Water-Storage Gains and Drought Improvements in California Spurred by Atmospheric Rivers." Please refer to the manuscript and supporting information for additional details.Dataset 1: Seasonal Changes in TWS based on the Mean and Median of the Solution SetWe estimate net gains in water storage during the fall and winter of each year (October to March) using the mean TWS solutions from all nine inversion products, subtracting the average storage for October from the average storage for March in the following year. One-sigma standard deviations are computed as the square root of the sum of the variances for October and for March. The variance in each month is computed based on the nine independent estimates of mean monthly storage (see “GNSS Analysis and Inversion” in the Supporting Information).The dataset includes net gains in water storage for both the Sierra Nevada and the SST watersheds (see header lines). For each watershed, results are provided in units of volume (km3) and in units of equivalent water height (mm). Furthermore, for each watershed, we also provide the total storage gains based on non-detrended and linearly detrended time series. In columns four and five, respectively, we provide estimates of snow water equivalent (SWE) from SNODAS (National Operational Hydrologic Remote Sensing Center, 2023) and water-storage changes in surface reservoirs from CDEC (California Data Exchange Center, 2023). In the final column, we provide estimates of net gains in subsurface storage (soil moisture plus groundwater), which are computed by subtracting SWE and reservoir storage from total storage.For each data block, the columns are: (1) time period (October of the starting year to March of the following year); (2) average gain in total water storage constrained by nine inversions of GNSS data; (3) one-sigma standard deviation in the average gain in total water storage; (4) gain in snow water equivalent, computed by subtracting the average snow storage in October from the average snow storage in March of the following year; (5) gain in reservoir storage (CDEC database; within the boundaries of each watershed), computed by subtracting the average reservoir storage in October from the average reservoir storage in March of the following year; and (6) average gain in subsurface water storage, estimated as the average gain in total water storage minus the average gain in snow storage minus the gain in reservoir storage.For the period from October 2022 to March 2023, we also compute mean gains in total water storage using daily estimates of TWS. Here, we subtract the average storage for the first week in October 2022 (1-7 October) from the average storage for the last week in March 2023 (26 March – 1 April). The one-sigma standard deviation is computed as the square root of the sum of the variances for the first week in October and the last week in March. The variance in each week is computed based on the nine independent estimates of daily storage over seven days (63 values per week). The storage gains for 2022-2023 computed using these methods are distinguished in the datafile by an asterisk (2022-2023*; final row in each data section).Dataset 1a provides estimates of storage changes based on the mean and standard deviation of the solution set. Dataset 1b provides estimates of storage changes based on the median and inter-quartile range of the solution set.Dataset 2: Estimated Changes in TWS in the Sierra NevadaChanges in TWS (units of volume: km3) in the Sierra Nevada watersheds. The first column represents the date (YYYY-MM-DD). For monthly solutions, the TWS solutions apply to the month leading up to that date. The remaining nine columns represent each of the nine solutions described in the text. “UM” represents the University of Montana, “SIO” represents the Scripps Institution of Oceanography, and “JPL” represents the Jet Propulsion Laboratory. “NGL” refers to the use of GNSS analysis products from the Nevada Geodetic Laboratory, “CWU” refers to Central Washington University, and “MEaSUREs” refers to the Making Earth System Data Records for Use in Research Environments program. The time series have not been detrended.We highlight that we have added changes in reservoir storage (see Dataset 8) back into the JPL solutions, since reservoir storage had been modeled and removed from the GNSS time series prior to inversion in the JPL workflow (see “Detailed Description of Methods” in the Supporting Information). Thus, the storage values presented here for JPL differ slightly from storage values pulled directly from Dataset 6 and integrated over the area of the Sierra Nevada watersheds.Dataset 3: Estimated Changes in TWS in the Sacramento-San Joaquin-Tulare BasinSame as Dataset 2, except that data apply to the Sacramento-San Joaquin-Tulare (SST) Basin.Dataset 4: Inversion Products (SIO)Inversion solutions (NetCDF format) for TWS changes across the western US from January 2006 through March 2023. The products were produced at the Scripps Institution of Oceanography (SIO) using the methods described in the Supporting Information.Dataset 5: Inversion Products (UM)Inversion solutions (NetCDF format) for TWS changes across the western US from January 2006 through March 2023. The products were produced at the University of Montana (UM) using the methods described in the Supporting Information.Dataset 6: Inversion Products (JPL)Inversion solutions (NetCDF format) for TWS changes across the western US from January 2006 through March 2023. The products were produced at the Jet Propulsion Laboratory (JPL) using the methods described in the Supporting Information.Dataset 7: Lists of Excluded StationsStations are excluded from an inversion for TWS change based on a variety of criteria (detailed in the Supporting Information), including poroelastic behavior, high noise levels, and susceptibility to volcanic deformation. This dataset provides lists of excluded stations from each institution generating inversion products (SIO, UM, JPL).Dataset 8: Lists of Reservoirs and LakesLists of reservoirs and lakes from the California Data Exchange Center (CDEC) (California Data Exchange Center, 2023), which are shown in Figures 1 and 2 of the main manuscript. In the interest of figure clarity, Figure 1 depicts only those reservoirs that exhibited volume changes of at least 0.15 km3 during the first half of WY23.Dataset 8a includes all reservoirs and lakes in California that exhibited volume changes of at least 0.15 km3 between October 2022 and March 2023. The threshold of 0.15 km3 represents a natural break in the distribution of volume changes at all reservoirs and lakes in California over that period (169 reservoirs and lakes in total). Most of the 169 reservoirs and lakes exhibited volume changes near zero km3. Datasets 8b and 8c include subsets of reservoirs and lakes (from Dataset 8a) that fall within the boundaries of the Sierra Nevada and SST watersheds.Furthermore, in the JPL data-processing and inversion workflow (see “Detailed Description of Methods” in the Supporting Information), surface displacements induced by volume changes in select lakes and reservoirs are modeled and removed from GNSS time series prior to inversion. The water-storage changes in the lakes and reservoirs are then added back into the solutions for water storage, derived from the inversion of GNSS data. Dataset 8d includes the list of reservoirs used in the JPL workflow.Dataset 9: Interseismic Strain Accumulation along the Cascadia Subduction ZoneJPL and UM remove interseismic strain accumulation associated with locking of the Cascadia subduction zone using an updated version of the Li et al. model (Li et al., 2018); see Supporting Information Section 2d. The dataset lists the east, north, and up velocity corrections (in the 4th, 5th, and 6th columns of the dataset, respectively) at each station; units are mm/year. The station ID, latitude, and longitude are listed in columns one, two, and three, respectively, of the dataset.Dataset 10: Days Impacted by Atmospheric RiversA list of days impacted by atmospheric rivers within (a) the HUC-2 boundary for California from 1 January 2008 until 1 April 2023 [Dataset 10a] and (b) the Sierra Nevada and SST watersheds from 1 October 2022 until 1 April 2023 [Dataset 10b]. File formats: [decimal year; integrated water-vapor transport (IVT) in kg m-1 s-1; AR category; and calendar date as a two-digit year followed by a three-character month followed by a two-digit day]. The AR category reflects the peak intensity anywhere within the watershed. We use the detection and classification methods of (Ralph et al., 2019; Rutz et al., 2014, 2019). See also Supporting Information Section 2i.Dataset 10c provides a list of days and times when ARs made landfall along the California coast between October 1980 and September 2023, based on the MERRA-2 reanalysis using the methods of (Rutz et al., 2014, 2019). Only coastal grid cells are included. File format: [year, month, day, hour, latitude, longitude, and IVT in kg m-1 s-1]. Values are sorted by time (year, month, day, hour) and then by latitude. See also Supporting Information Section 2g.more » « less
- 
            Accurate hydrologic modeling is vital to characterizing how the terrestrial water cycle responds to climate change. Pure deep learning (DL) models have been shown to outperform process-based ones while remaining difficult to interpret. More recently, differentiable physics-informed machine learning models with a physical backbone can systematically integrate physical equations and DL, predicting untrained variables and processes with high performance. However, it is unclear if such models are competitive for global-scale applications with a simple backbone. Therefore, we use – for the first time at this scale – differentiable hydrologic models (full name δHBV-globe1.0-hydroDL, shortened to δHBV here) to simulate the rainfall–runoff processes for 3753 basins around the world. Moreover, we compare the δHBV models to a purely data-driven long short-term memory (LSTM) model to examine their strengths and limitations. Both LSTM and the δHBV models provide competitive daily hydrologic simulation capabilities in global basins, with median Kling–Gupta efficiency values close to or higher than 0.7 (and 0.78 with LSTM for a subset of 1675 basins with long-term discharge records), significantly outperforming traditional models. Moreover, regionalized differentiable models demonstrated stronger spatial generalization ability (median KGE 0.64) than a traditional parameter regionalization approach (median KGE 0.46) and even LSTM for ungauged region tests across continents. Nevertheless, relative to LSTM, the differentiable model was hampered by structural deficiencies for cold or polar regions, highly arid regions, and basins with significant human impacts. This study also sets the benchmark for hydrologic estimates around the world and builds a foundation for improving global hydrologic simulations.more » « less
- 
            Abstract Octalenobisterphenylene1(also known as terphenylene dimer) was synthesized from 3,3′,5,5′‐tetraaryl‐substituted biaryl bytert‐butyllithium‐mediated cyclization followed by oxidative coupling. This one‐pot two‐step protocol facilitated the successive formation of four four‐membered and two eight‐membered rings. Treatment of1with sodium metal, followed by crystallization from THF, yielded the remarkable diradical dianion [(1•–)2]2−, where the two molecular halves are connected by four σ bonds. The cyclodimerization is driven by the pronounced reactivity and strain of the central six‐membered ring within the [3]phenylene subunit. The structure and diradical nature of [(Na+)2(1•–)2] were confirmed through X‐ray crystallography, DFT computations, and1H NMR and ESR spectra. These investigations revealed that the two spins, one on each molecular half, exhibit minimal mutual interaction.more » « less
- 
            Abstract California experienced a historic run of nine consecutive landfalling atmospheric rivers (ARs) in three weeks’ time during winter 2022/23. Following three years of drought from 2020 to 2022, intense landfalling ARs across California in December 2022–January 2023 were responsible for bringing reservoirs back to historical averages and producing damaging floods and debris flows. In recent years, the Center for Western Weather and Water Extremes and collaborating institutions have developed and routinely provided to end users peer-reviewed experimental seasonal (1–6 month lead time) and subseasonal (2–6 week lead time) prediction tools for western U.S. ARs, circulation regimes, and precipitation. Here, we evaluate the performance of experimental seasonal precipitation forecasts for winter 2022/23, along with experimental subseasonal AR activity and circulation forecasts during the December 2022 regime shift from dry conditions to persistent troughing and record AR-driven wetness over the western United States. Experimental seasonal precipitation forecasts were too dry across Southern California (likely due to their overreliance on La Niña), and the observed above-normal precipitation across Northern and Central California was underpredicted. However, experimental subseasonal forecasts skillfully captured the regime shift from dry to wet conditions in late December 2022 at 2–3 week lead time. During this time, an active MJO shift from phases 4 and 5 to 6 and 7 occurred, which historically tilts the odds toward increased AR activity over California. New experimental seasonal and subseasonal synthesis forecast products, designed to aggregate information across institutions and methods, are introduced in the context of this historic winter to provide situational awareness guidance to western U.S. water managers.more » « less
- 
            Abstract Arctic rivers drain ~15% of the global land surface and significantly influence local communities and economies, freshwater and marine ecosystems, and global climate. However, trusted and public knowledge of pan-Arctic rivers is inadequate, especially for small rivers and across Eurasia, inhibiting understanding of the Arctic response to climate change. Here, we calculate daily streamflow in 486,493 pan-Arctic river reaches from 1984-2018 by assimilating 9.18 million river discharge estimates made from 155,710 satellite images into hydrologic model simulations. We reveal larger and more heterogenous total water export (3-17% greater) and water export acceleration (factor of 1.2-3.3 larger) than previously reported, with substantial differences across basins, ecoregions, stream orders, human regulation, and permafrost regimes. We also find significant changes in the spring freshet and summer stream intermittency. Ultimately, our results represent an updated, publicly available, and more accurate daily understanding of Arctic rivers uniquely enabled by recent advances in hydrologic modeling and remote sensing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
